Ramified local isometric embeddings of singular Riemannian metrics

نویسندگان

چکیده

In this paper, we are concerned with the existence of local isometric embeddings into Euclidean space for analytic Riemannian metrics g , defined on a domain U ? R n which singular in sense that determinant metric tensor is allowed to vanish at an isolated point (say origin). Specifically, show that, under suitable technical assumptions, there exists embedding u from ( ? ? ? ) E 2 + 3 ? 4 / where : ? \ { 0 } finite branched cover deleted neighborhood origin. Our result can thus be thought as generalization classical Cartan-Janet Theorem setting degenerate point. proof uses Leray's ramified Cauchy-Kovalevskaya differential systems, form obtained by Choquet-Bruhat non-linear systems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isometric Embeddings of Riemannian Manifolds

The dot in (1) denotes the usual scalar product of R. The notion embedding means, that w is locally an immersion and globally a homeomorphism of M onto the subspace u(M) of R*. If an embedding w : M -• R satisfies (1) on the whole M, we speak of an isometric embedding. If w is an immersion and a solution of (1) in a (possibly small) neighbourhood of any point of M, we speak of a local isometric...

متن کامل

Relative Isometric Embeddings of Riemannian Manifolds

We prove the existence of C1 isometric embeddings, and C∞ approximate isometric embeddings, of Riemannian manifolds into Euclidean space with prescribed values in a neighborhood of a point.

متن کامل

Near Isometric Terminal Embeddings for Doubling Metrics

Given a metric space (X, d), a set of terminals K ⊆ X , and a parameter t ≥ 1, we consider metric structures (e.g., spanners, distance oracles, embedding into normed spaces) that preserve distances for all pairs inK ×X up to a factor of t, and have small size (e.g. number of edges for spanners, dimension for embeddings). While such terminal (aka source-wise) metric structures are known to exist...

متن کامل

RELATIVE ISOMETRIC EMBEDDINGS OF RIEMANNIAN MANIFOLDS IN Rn

We prove the existence of C isometric embeddings, and C∞ approximate isometric embeddings, of Riemannian manifolds into Euclidean space with prescribed values in a neighborhood of a point.

متن کامل

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2021

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2020.12.025